
Decision-Theoretic Troubleshooting: Hardness of Approximation∗

Václav Ĺın
Faculty of Management, University of Economics, Prague

and
Institute of Information Theory and Automation of the ASCR

lin@utia.cas.cz

Abstract

Troubleshooting is one of the application areas of Bayesian networks. Given a probabilistic
model of a malfunctioning device, the task is to find the repair strategy with minimal
expected cost. Except for simple cases, finding an optimal strategy is NP-hard. We show
that optimal troubleshooting strategies are also hard to approximate.

1 Introduction

In decision-theoretic troubleshooting, we are
given a probabilistic model of a man-made de-
vice. The model describes faults, repair actions
and diagnostic actions addressing the faults.
Knowing that the modeled device is in a faulty
state, the task is to find the most cost-efficient
strategy for fixing the device with available re-
pair and diagnostic actions. This is a natural
optimization problem that has been studied in-
dependently in various contexts since the early
days of computing – the oldest works known to
the author are (Johnson, 1956; Gluss, 1959).

Troubleshooting has become one of the appli-
cation areas of Bayesian networks and as such it
has received considerable attention over the last
two decades. We refer to (Breese and Hecker-
man, 1996; Jensen et al., 2001; Ottosen, 2012)
for discussion, references and survey of the most
important results. The problem is known to be
solvable in polynomial time under quite restric-
tive assumptions (to be discussed in Section 2).
Otherwise, the problem is NP-hard (Vomlelová,
2003; Ĺın, 2011).

In Section 2, we recall several troubleshoot-
ing scenarios proposed in the literature. In Sec-
tion 3 we identify a combinatorial optimization
problem that captures their difficulty and show

∗This work was supported by the Institutional Re-
search Support of the Faculty of Management, Prague
University of Economics.

that computing approximate solutions with per-
formance guaranteed within certain bounds is
NP-hard.

Our Contribution. We solve an open prob-
lem suggested by Ottosen (2012) – we show that
troubleshooting with cost clusters forming an
acyclic directed graph (see below) is both NP-
complete and NP-hard to approximate.

We strenghten known NP-completeness re-
sults due to Vomlelová (2003) by showing hard-
ness of approximation for troubleshooting sce-
narios containing either multiple dependend
faults or dependent actions.

All the troubleshooting scenarios that we con-
sider are closely related to a single combinato-
rial problem – Min-sum Set Cover (Feige et al.,
2004). This can be used to develop novel trou-
bleshooting algorithms in the future (see also
Section 4).

2 Troubleshooting Models and
Strategies

Bayesian networks for troubleshooting contain
variables representing faults, repair actions,
called simply actions, and diagnostic actions,
called questions. We take several assumptions
common in earlier literature (Jensen et al., 2001;
Vomlelová and Vomlel, 2003):

Actions have only two possible outcomes –
either the system is fixed after the action has
been performed, or it remains in a faulty state.

F

F1

F2

F3

A1

A2

A3 Q

Figure 1: Bayesian network from Example 1.
A troubleshooting model with single fault as-
sumption and actions conditionally independent
given the faults.

We assume that by performing the actions, we
cannot introduce any new faults, and we know
the outcome of any action immediately after its
execution. Questions do not alter the state of
the system, but may give useful information to
direct the troubleshooting process. Each action
or question has an associated cost. We take the
assumption that these costs do not change over
time.

Often, we take the single fault assumption –
there can be but a single fault present in the
system at any moment of time.

Example 1. A simple troubleshooting model is
shown in Figure 1. There are three faults – F1,
F2, F3. To enforce the single fault assumption,
we use a fault variable F with states {1, 2, 3}
and define the probability tables for all Fi so
that Fi = 1 if and only if F = i. There are
actions A1, A2, A3, each addressing one of the
faults. There is a question Q that can be used
to discriminate between F2 and F3.

Troubleshooting strategy is a policy govern-
ing the troubleshooting process. In general, it
is a rooted directed tree with internal nodes la-
beled by actions and questions. Edges are la-
beled by outcomes of the actions and questions.
The outdegree of nodes labeled by repair ac-
tions is exactly two, since we assume that each
action has only two possible outcomes: “1” (sys-
tem fixed) and “0” (system still in faulty state).
An example of a troubleshooting strategy is in
Figure 2. Let s be a troubleshooting strategy.

A1

Q

A2

0

p = 1
4

1
0

A3

0

p = 1
4

1

1

0

p = 1
21

Figure 2: A troubleshooting strategy with ac-
tions A1, A2, A3 and a question Q. Nodes are
labeled by actions and questions; edges are la-
beled by action or question outcomes. Accord-
ing to this strategy, each troubleshooting session
will begin with action A1. If it fails (A1 = 0),
we use question Q. Depending on the outcome
of Q, we either perform A2 or A3. For further
discussion, see Example 2.

Each path from the root of s to one of the leaves
corresponds to a possible troubleshooting ses-
sion starting in the root and terminating in the
leaf. Failure nodes are all the terminal nodes l
of s for which the corresponding troubleshoot-
ing session fails to fix the system. For a strategy
s, we use this notation:

• L(s) – the set of terminal nodes,

• t(l) – the cost of performing all the actions
and questions on the path from the root of
s to a terminal node l ∈ L(s),

• P(l) – the probability of reaching node l,

• L−(s) ⊂ L(s) – the set of failure nodes,

• cP – the penalty for not fixing the system.

The goal is to construct a strategy s minimizing
the expected cost of repair

ECR(s) =
∑
l∈L(s)

P(l)·t(l)+
∑

l∈L−(s)

P(l)·cP . (1)

Heuristic search algorithms for computing opti-
mal troubleshooting strategies are described in
(Vomlelová and Vomlel, 2003).

Example 2. We continue with Example 1, by
showing how to evaluate the ECR of the strat-
egy shown in Figure 2. Assume that the proba-
bilities specified for the Bayesian network shown
in Figure 1 are:

• P(F = 1) = 1
2 ,

• P(F = 2) = P(F = 3) = 1
4 ,

• for i = 1, 2, 3, Fi = 1 if and only if F = i,

• for i = 1, 2, 3, Ai = 1 if and only if Fi = 1,

• Q = 1 if and only if F3 = 1.

Failure terminal nodes of the strategy have
zero probability, therefore we can disregard the
penalty term cP of Formula 1. Assume the cost
of Q and all Ai’s is one. Summing over the ter-
minal nodes with positive probability (see the
p’s in Figure 2), we get

ECR =
1

2
· 1 +

1

4
· 2 +

1

4
· 2 =

3

2
.

Troubleshooting without Questions.
When there are no questions, the troubleshoot-
ing strategy is just a sequence of actions. The
actions are performed in order and the trou-
bleshooting session continues until the fault is
fixed or all the actions have been used.1 When
we assume that all the actions of a sequence
A1, . . . , An are sufficient to fix the fault, we can
ignore the penalty term of Formula 1. Then we
can use Formula 2 to compute the ECR:

n∑
i=1

P
(⋃
j<i

{Aj = 0} ∪ {Ai = 1}
)
·
∑
j≤i

c(Ai), (2)

i.e., we multiply the cost of first i actions by
the probability of fixing the fault with the i-th
action. Finding optimal strategies in polyno-
mial time is known to be possible under quite
restrictive assumptions (Jensen et al., 2001):

1Note that this is a simplification. We could con-
sider models where it is possible to terminate the trou-
bleshooting process before we have tried all the available
actions. Instead of continued troubleshooting, we would
pay some fixed penalty. In the real life, this happens –
we quite often decide to buy a new device before we have
tried everything possible to fix an old one.

• There is exactly one fault present.

• The actions are conditionally independent
given the faults and each action addresses
exactly one fault.

• The action costs are constant over time and
there are no questions.

Scenarios conforming to these assumptions are
called basic troubleshooting. Optimal trou-
bleshooting sequence is computed by ordering
the actions so that the ratios P (Aj = 1)/c(Aj)
are non-increasing.2

Cost Clusters. When troubleshooting a
large piece of machinery (such as the car
engine), it is often necessary to disassem-
ble the machine to perform certain actions.
In general, some of the troubleshooting ac-
tions may require common initialization or
preparatory work. To model such situations,
Langseth and Jensen (2001) proposed an exten-
sion of the basic troubleshooting model, where
the set of actions is partitioned into disjoint
subsets, called cost clusters. To access ac-
tions within a cluster Ki, we have to pay ad-
ditional cost, c(Ki). Once c(Ki) is paid, we
can use actions from Ki at any time, pos-
sibly mixed with actions from other clusters.
Ottosen and Jensen (2010) have generalized the
cost cluster scenario by allowing the cost clus-
ters to form a tree and gave a polynomial-time
algorithm for finding optimal troubleshooting
sequences. Ottosen (2012) suggested a further
generalization of the problem, where the cost
clusters are allowed to form an acyclic directed
graph. A simple model with cost cluster graph
is shown in Figure 3.

Note that the cost cluster scenarios dis-
cussed so far differ from the scenario where we
have cost clusters “without inside information”
(Langseth and Jensen, 2001). Without inside
information, we have to close the most recently
open cluster whenever we need to check the out-
come of troubleshooting actions, and the cost

2In different contexts, this observation has already
been made in the 1950’s – by Bellman (1957) in Dynamic
Programming and by Smith (1956) in Scheduling.

F

F1

F2

F3

F4

A1

A2

A3

A4

C1

C2

C3

C4

Cx

Cy

Cz

Figure 3: Troubleshooting with cost clusters.
At the left side is Bayesian network with faults
Fi and actions Ai. At the right side is the graph
of cost clusters. To access, say, action A2, we
have to open clusters Cy and C2 (or Cx and C2).

c(Ki) is paid whenever we open Ki again. Trou-
bleshooting cost clusters without inside infor-
mation is NP-hard (Ĺın, 2011).

Modifications of the Cost Cluster Model.
Gluss (1959) described a problem which is sim-
ilar to the troubleshooting scenarios discussed
in previous paragraph. Its complexity is un-
known. Assume that there are independent
faults and each of them is addressed by sin-
gle action. Any number of faults can occur
at the same time. The set of actions is par-
titioned into disjoint cost clusters (“modules”
in (Gluss, 1959)). When we decide to perform
an action from a particular cluster Ki, we pay
the cluster opening cost c(Ki). If we continue
performing actions from Ki, no additional cost
is incurred. However, a cluster opening cost is
incurred whenever we switch between clusters.
Outcome of an action is known immediately af-
ter it is performed (contrary to the cost cluster
scenario without inside information).

When we take the single fault assump-
tion, we can use observations made in (Ĺın,
2011) and show that this troubleshooting sce-
nario is equivalent to a scheduling problem
called “scheduling job families with sequence-
independent setup times on a single ma-
chine to minimize total weighted completion

time”, denoted 1|sf |
∑
wjCj in the Schedul-

ing notation. This problem is mentioned by
Potts and Kovalyov (2000). They give refer-
ences to branch-and-bound algorithms for the
problem but report that its complexity status
is unresolved. To our knowledge, this is still
true today.

3 Hardness of Approximation

We assume the reader is familiar with basic
concepts of computational complexity theory.
Therefore we only summarize some basic ter-
minology used later on. For an introduction to
the theory, we refer to textbooks such as (Garey
and Johnson, 1979; Arora and Barak, 2009).

Given a minimization problem L, constant
ρ > 1, and a polynomial-time algorithm A for L,
we say that A is a polynomial ρ-approximation
algorithm if for all instances x of problem L we
have ρ ≥ A(x)/opt(x). By A(x) we denote the
objective value returned by algorithm A when
applied to instance x, and by opt(x) we denote
the optimum of x. We say that it is NP-hard
to approximate L within ratio ρ, if there is a
polynomial-time reduction φ from 3SAT to L,
such that φ combined with a hypothetical ρ-
approximation algorithm for L would make it
possible to decide 3SAT in polynomial time.
By NP-completeness of 3SAT, this would im-
ply P=NP. Inapproximability results are now
known for many problems (Johnson, 2006).

3.1 Reductions

In this section, we treat troubleshooting scenar-
ios without questions. We isolate several fea-
tures of troubleshooting scenarios and show that
each of them is sufficient to make troubleshoot-
ing hard to approximate. These features are:
multiple dependent faults, dependent actions,
acyclic directed graph of cost clusters.

The complexity of the troubleshooting sce-
narios studied in this paper is captured by single
combinatorial problem that combines covering
and sequencing – Min-sum Set Cover.

Definition 1 (Min-sum Set Cover (MSSC)).
Input: A finite set U , a collection of subsets
C = {S ⊆ U}.

Objective: Find a linear ordering π of C mini-
mizing the function

σ(U, C, π) =
∑
u∈U

π(u),

where π(u) is the index of the first set S ∈ C
covering u under the ordering π.

Theorem 1 (Feige et al. (2004)). MSSC has
no polynomial (4 − ε)-approximation algorithm
for any ε > 0 unless P=NP.

Remark. In the proofs of Theorems 2, 3, 4, we
will assume that any MSCC instance (U, C) used
in the reductions is such that U =

⋃
{S ∈ C},

i.e., the set cover exists. We can make such an
assumption without a loss of generality, since
the hardness-of-approximation proof in (Feige
et al., 2004) works with set systems for which
set covers exist.

For later use, we record two simple lemmas.
The first one follows from the definition. The
second lemma is a consequence of the first one.

Lemma 1. Consider an MSCC instance (U, C)
and an ordering π of C. Denote by Uπ(i) the set
of u ∈ U first covered by the i-th set of π. Then

σ(U, C, π) =

|C|∑
i=1

|Uπ(i)| · i. (3)

Lemma 2. When U =
⋃
{S ∈ C} and π∗ is an

optimal ordering of C, then

|U | ≤ σ(U, C, π∗) ≤
|U |∑
i=1

i. (4)

We will reduce MSSC to several troubleshoot-
ing scenarios. In this section, we will work with
scenarios without questions and will use For-
mula 2 for computation of the ECR. Let π be
a linear ordering of actions {Ai}ni=1 and define

pπ(i) = P(
⋃
j<i

{Aπ(j) = 0} ∪ {Aπ(i) = 1}).

Formula 2 then becomes

ECR =
n∑
i=1

pπ(i) ·
∑
j≤i

c(Aπ(i)). (5)

In definitions 2, 3, 4 we formally define simple
troubleshooting scenarios, each of them isolat-
ing one property:

• single fault and dependent actions (Defini-
tion 2),

• multiple dependent faults (Definition 3),

• single fault, independent actions and cost
clusters forming a DAG (Definition 4).

We show that already these very simple scenar-
ions are hard to approximate.

In the proofs to follow, all the sets, collections
of variables etc. are finite. All random variables
are discrete.

Definition 2 (Troubleshooting with Dependent
Actions (TSDA)). Input: A random variable F
with values (faults) f1, . . . , fn, a probability dis-
tribution P(F), a set of actions {Ai}ki=1. Each
action fixes a subset of faults F (Ai) ⊆ {fj}nj=1

with certainty and no other faults. Each fault
is fixed by at least one action.
Objective: Find a linear ordering of actions
minimizing the expected cost of repair.

Theorem 2. TSDA has no polynomial (4− ε)-
approximation algorithm for any ε > 0 unless
P=NP.

Proof. We show that a special case of Trou-
bleshooting with Dependent Actions is equiv-
alent to Min-sum Set Cover. We reduce an
MSCC instance (U, C) to a troubleshooting
problem as follows. Create a fault variable F
with a set of values {fu}u∈U . Distribution P(F)
is uniform. For each S ∈ C create an action AS
with cost one. AS fixes fu with probability one
if and only if fu ∈ S. Let k = |C|. Given an
arbitrary linear ordering Aπ(1), . . . , Aπ(k) of the
actions, denote by Fπ(i) the set of faults first
covered by the i-th action of the ordering. The
expected cost of repair (see Formula 5) is

k∑
i=1

pπ(i) · i =
k∑
i=1

i · |Fπ(i)|/|U |.

Using Lemma 1, we see that the ECR multiplied
by |U | is equal to σ(U, C, π). Therefore any ap-
proximation algoritm for TSDA could be used
to approximate (U, C) with the same approxi-
mation ratio.

Definition 3 (Troubleshooting with Dependent
Faults (TSDF)). Input: A Bayesian network
representing probability distribution P(F), bi-
nary random variables F1, . . . , Fn ∈ F (faults),
a set of actions {Ai}ni=1. For each fault, there is
exactly one action that fixes it with certainty.
Objective: Find a linear ordering π of actions
that minimizes the ECR.

Theorem 3. TSDF has no polynomial (4− ε)-
approximation algorithm for any ε > 0 unless
P=NP.

Proof. We use an idea by Vomlelová (2003) to
transform the TSDA instance constructed in
proof of Theorem 2 to TSDF. First, construct a
Bayesian network for the TSDA with vertex set

{F}
⋃
{Fu}u∈U

⋃
{AS}S∈C

and edge set

{F → Fu}u∈U
⋃
{Fu → AS}u∈S .

Variable F has states {fu}u∈U and an uniform
probability distribution. All the other variables
have deterministic distributions of probability:
Fu = 1 if and only if F = fu, and AS = 1 if and
only if at least one parent Fu of AS has value 1.
An example of such a network is shown in the
left side of Figure 4 (for now, ignore the dotted
part). We use the network to create a TSDF
problem. Add to the network k new vertices
A′S and edges AS → A′S (see the dotted part
of Figure 4). The new vertices are actions of
the TSDF instance, the original actions AS are
now faults. Cost of the new actions is one. The
optimal ECR of the original TSDA problem is
the same as the optimal ECR of the constructed
TSDF problem.

Remark. In Definition 3, we place no restric-
tion on P(F) except that it is represented by
a Bayesian network. Bayesian network infer-
ence is in general a hard problem in itself (see
e.g. Kwisthout et al. (2010) for references). In
our proof of Theorem 3 we have constructed a
Bayesian network for which the inference is easy
and yet, the Troubleshooting problem is hard.

F

F1

F2

F3

F4

A12 A′12

A23 A′23

A24 A′24

Figure 4: Model with dependent actions for U =
{1, 2, 3, 4} and C = {{1, 2}, {2, 3}, {2, 4}}. The
dotted edges and vertices show extension to a
model with dependent faults.

Definition 4 (Troubleshooting with DAG Cost
Clusters (TSCC)). Input: A random variable
F with values (faults) f1, . . . , fn, a probability
distribution P(F), a set of actions {Ai}ni=1. For
each fault, there is exactly one action that fixes
it with certainty. There is an acyclic directed
graph (V,E) of cost clusters. Vertices v ∈ V
represent cost clusters and edges u → v show
that cluster v can be accessed from u. Each ac-
tion Ai is assigned to some cluster v ∈ V , and
each cluster contains zero or more actions. The
cost of opening cluster v is c(v) ≥ 0.
Objective: Find a schedule of cluster opening
and troubleshooting actions minimizing the ex-
pected cost of repair.

Theorem 4. TSCC has no polynomial (3− ε)-
approximation algorithm for any ε > 0 unless
P=NP. The result holds even when the cost clus-
ter graph is bipartite.

Proof. We again reduce Min-sum Set Cover.
For each item u ∈ U , create a fault fu with
probability P (F = fu) = 1/|U | and an action
Au, solving exclusively fu. Each action is con-
tained in an associated cost cluster, Cu. The
cost of opening Cu and performing Au is one.
For each set S ∈ C, create an empty cluster CS
with cost c (c is a positive constant to be dis-
cussed later). Create directed edges from the

CS ’s to the Cu’s according to set membership
– there is edge CS → Cu if and only if S 3 u.
An example of a cost cluster model created this
way is in Figure 3. In any optimal schedule,
each cluster Cu is opened right before perform-
ing Au; therefore, we shall not mention open-
ing of the Cu’s in the rest of the proof. Any
troubleshooting sequence has to contain all the
actions Au. Their order is arbitrary, since their
costs and probabilities of success are uniform.
Thus the ECR can be decomposed as a sum of
the expected cost of actions and the expected
cost of opening “top-level” clusters CS . Assume
the clusters {CS}S∈C are indexed by integers
1, . . . , k and are opened in sequence C1, . . . , Ck.
Using Formula 5, we get

n∑
i=1

i

n︸ ︷︷ ︸
actions

+
k∑
j=1

P (Cj) · jc︸ ︷︷ ︸
top-level clusters

=
n+ 1

2
+c ·

k∑
j=1

P (Cj) · j,

where n = |U |, k = |C| and P (Cj) is the prob-
ability that by opening Cj we make accessible
an action that fixes the fault and therefore Cj
is the last cluster of the sequence that needs to
be open. We assume that once a cluster CS is
open, we perform all the actions accessible from
CS except for those that have already been per-
formed. Indeed, if we did not perform the ac-
tions greedily after opening each cost cluster,
the ECR would increase, because some of the
cost clusters could be open needlessly. With this
assumption, P (Cj) = |Fπ(j)|/n, where Fπ(j) is
the set of actions first made available by opening
the j-th cluster. Let π be some ordering of C and
let σ(U, C, π) be the value given by Formula 3.
Then there is a corresponding troubleshooting
sequence specified by ordering π with

ECR(π) =
n+ 1

2
+
c

n
· σ(U, C, π), (6)

and the correspondence of MSSC solutions and
TSCC solutions is one to one.

We conclude the proof by showing that for
certain value of c,

ECR(π)

ECR(π∗)
< 3 implies

σ(U, C, π)

σ(U, C, π∗)
< 4. (7)

By Theorem 1, this would imply P=NP. Using
Formula 6, we can write inequality

σ(U, C, π)

σ(U, C, π∗)
=

ECR(π)− (n+ 1)/2

ECR(π∗)− (n+ 1)/2
< 4 (8)

which is equivalent to

ECR(π)

ECR(π∗)
< 4−

3
2(n+ 1)

ECR(π∗)
(9)

Now, for any lower bound ECR(π∗) of ECR(π∗),
the inequality

ECR(π)

ECR(π∗)
< 4−

3
2(n+ 1)

ECR(π∗)
(10)

implies inequality 9. To get the estimate ECR,
we use Formula 6 and Lemma 2:

ECR(π∗) =
n+ 1

2
+
c

n
· n =

n+ 1

2
+ c.

When we set c = n + 1 and use ECR in in-
equality 10, we finally prove implication 7 via
inequalities 9 and 8.

Remark. Note that had we used a greater value
for the constant c in the proof, we would get
an approximation ratio closer to 4, yielding a
stronger theorem.

Corollary 1. Troubleshooting with DAG Cost
Clusters is NP-complete.

Proof. NP-completeness is a concept defined for
decision problems. Therefore we have to con-
sider the decision variant of TSCC: given an ar-
bitrary positive constant K and an instance x of
TSCC, is it true that opt(x) ≤ K? This decision
problem clearly belongs to class NP – once we
guess the cluster opening / action schedule s(x),
it is easy to compute the ECR in polynomial
time and check ECR(s(x)) ≤ K. NP-hardness
is implied by Theorem 4.

4 Summary and Future Work

In the proofs, we have seen that the three trou-
bleshooting scenarios are closely related to a
well studied combinatorial problem Min-sum
Set Cover. The natural next step is to have

a look at the algorithms developed for the men-
tioned problem and see how well do they ap-
ply to troubleshooting. In particular, a simple
greedy algorithm for MSSC achieves approxi-
mation ratio 4, and hence the bound given by
Theorem 1 is tight (Feige et al., 2004).

An open problem is the hardness of approxi-
mation of troubleshooting with questions. The
problem has been shown to be NP-hard by
Vomlelová (2003). The NP-hardness can be
shown by a simple reduction from the Decision
Tree Problem (Garey and Johnson, 1979), which
has recently been shown to be hard to approx-
imate by Adler and Heeringa (2012). However,
it is not obvious how to extend the reduction to
prove also hardness of approximation for trou-
bleshooting with questions.

The Troubleshooting community grew in the
1990’s without knowing about the very early
works such as (Johnson, 1956) and (Gluss,
1959). It is worthwhile to perform further
bibliographic research to see whether their work
has been carried on in some communities other
than our own.

Acknowledgments

I thank Jirka Vomlel for useful discussions.

References

Micah Adler and Brent Heeringa. 2012. Approx-
imating optimal binary decision trees. Algorith-
mica, 62(3-4):1112–1121.

Sanjeev Arora and Boaz Barak. 2009. Computa-
tional Complexity - A Modern Approach. Cam-
bridge University Press.

Richard E. Bellman. 1957. Dynamic Programming.
Princeton University Press, Princeton, NJ.

John S. Breese and David Heckerman. 1996.
Decision-theoretic Troubleshooting: A framework
for repair and experiment. In Eric Horvitz and
Finn Verner Jensen, editors, UAI, pages 124–132.
Morgan Kaufmann.

Uriel Feige, László Lovász, and Prasad Tetali. 2004.
Approximating Min Sum Set Cover. Algorith-
mica, 40(4):219–234.

Michael R. Garey and David S. Johnson. 1979.
Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman.

Brian Gluss. 1959. An optimum policy for detecting
a fault in a complex system. Operations Research,
7(4):468–477.

Finn Verner Jensen, Uffe Kjærulff, Brian Kris-
tiansen, Helge Langseth, Claus Skaanning, Jǐŕı
Vomlel, and Marta Vomlelová. 2001. The SACSO
methodology for troubleshooting complex sys-
tems. AI EDAM, 15(4):321–333.

Selmer M. Johnson. 1956. Optimal Sequential Test-
ing. Number RM1652. Rand Corporation.

David S. Johnson. 2006. The NP-completeness col-
umn: The many limits on approximation. ACM
Transactions on Algorithms, 2(3):473–489.

Johan Kwisthout, Hans L. Bodlaender, and Linda C.
van der Gaag. 2010. The necessity of bounded
treewidth for efficient inference in Bayesian net-
works. In Helder Coelho, Rudi Studer, and
Michael Wooldridge, editors, ECAI, volume 215
of Frontiers in Artificial Intelligence and Applica-
tions, pages 237–242. IOS Press.

Helge Langseth and Finn Verner Jensen. 2001.
Heuristics for two extensions of basic trou-
bleshooting. In Henrik Hautop Lund, Brian H.
Mayoh, and John W. Perram, editors, SCAI, vol-
ume 66 of Frontiers in Artificial Intelligence and
Applications, pages 80–89. IOS Press.

Václav Ĺın. 2011. Extensions of decision-theoretic
Troubleshooting: Cost clusters and precedence
constraints. In Weiru Liu, editor, ECSQARU,
volume 6717 of Lecture Notes in Computer Sci-
ence, pages 206–216. Springer.

Thorsten J. Ottosen and Finn Verner Jensen. 2010.
The cost of troubleshooting cost clusters with in-
side information. In Peter Grünwald and Peter
Spirtes, editors, UAI, pages 409–416. AUAI Press.

Thorsten J. Ottosen. 2012. Solutions and Heuristics
for Troubleshooting with Dependent Actions and
Conditional Costs. Aalborg University, Denmark.

Chris N. Potts and Mikhail Y. Kovalyov. 2000.
Scheduling with batching: A review. European
Journal of Operational Research, 120(2):228–249.

Wayne E. Smith. 1956. Various optimizers for
single-stage production. Naval Research Logistics
Quarterly, 3(1-2):59–66.

Marta Vomlelová and Jǐŕı Vomlel. 2003. Trou-
bleshooting: NP-hardness and solution methods.
Soft Comput., 7(5):357–368.

Marta Vomlelová. 2003. Complexity of Decision-
theoretic Troubleshooting. Int. J. Intell. Syst.,
18(2):267–277.

